Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model.
نویسندگان
چکیده
We study noise-induced resonance effects in the leaky integrate-and-fire neuron model with absolute refractory period, driven by a Gaussian white noise. It is demonstrated that a finite noise level may either maximize or minimize the regularity of the spike train. We also partition the parameter space into regimes where either or both of these effects occur. It is shown that the coherence minimization at moderate noise results in a flat spectral response with respect to periodic stimulation in contrast to sharp resonances that are observed for both small and large noise intensities.
منابع مشابه
Coherence depression in stochastic excitable systems with two-frequency forcing.
We study the response of two generic neuron models, the leaky integrate-and-fire (LIF) model and the leaky integrate-and-fire model with dynamic threshold (LIFDT) (i.e., with memory) to a stimulus consisting of two sinusoidal drives with incommensurate frequency, an amplitude modulation ("envelope") noise and a relatively weak additive noise. Spectral and coherence analysis of responses to such...
متن کاملTowards a Unified Model for the Retina - Static vs Dynamic Integrate and Fire Models
Many models have been proposed to describe the visual processing mechanisms in the retina. The spike generation mechanism of the models is typically performed by a Poisson process. Alternatively, a more realistic approach can be used by implementing an integrate and fire mechanism. In this paper we show that the Stochastic Leaky Integrate and Fire (SLIF) model is equivalent to a non-linear Pois...
متن کاملComparative study of different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation.
Stochastic integrate-and-fire (IF) neuron models have found widespread applications in computational neuroscience. Here we present results on the white-noise-driven perfect, leaky, and quadratic IF models, focusing on the spectral statistics (power spectra, cross spectra, and coherence functions) in different dynamical regimes (noise-induced and tonic firing regimes with low or moderate noise)....
متن کاملStatistical Analysis of Neural Data: the Integrate-and-fire Neuron and Other Continuous-time State-space Models *
3 The “Fokker-Planck” equation is a partial differential equation that controls the evolution of the forward (and backward) probabilities 9 3.1 Deriving the “free” Fokker-Planck equation (no spike observations) . . . . . . 10 3.1.1 Conductance-based model . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 Computing mean firing rates in a network of GLM neurons . . . . . . 13 3.2 Incorpo...
متن کاملSpike Train Probability Models for Stimulus-Driven Leaky Integrate-and-Fire Neurons
Mathematical models of neurons are widely used to improve understanding of neuronal spiking behavior. These models can produce artificial spike trains that resemble actual spike train data in important ways, but they are not very easy to apply to the analysis of spike train data. Instead, statistical methods based on point process models of spike trains provide a wide range of data-analytical t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2002